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Abstract

There has been growing interest in the use of diffuse infrared reflectance as a quick, inexpensive tool for soil character-

ization. In studies reported to date, calibration and validation samples have been collected at either a local or regional scale. For

this study, we selected 3768 samples from all 50 U.S. states and two tropical territories and an additional 416 samples from 36

different countries in Africa (125), Asia (104), the Americas (75) and Europe (112). The samples were selected from the

National Soil Survey Center archives in Lincoln, NE, USA, with only one sample per pedon and a weighted random sampling

to maximize compositional diversity. Applying visible and near-infrared (VNIR) diffuse reflectance spectroscopy (DRS) to air-

dry soil (b2 mm) with auxiliary predictors including sand content or pH, we obtained validation root mean squared deviation

(RMSD) estimates of 54 g kg�1 for clay, 7.9 g kg�1 for soil organic C (SOC), 5.6 g kg�1 for inorganic C (IC), 8.9 g kg�1 for

dithionate–citrate extractable Fe (FEd), and 5.5 cmolc kg
�1 for cation exchange capacity (CEC) with NH4 at pH=7. For all of

these properties, boosted regression trees (BRT) outperformed PLS regression, suggesting that this might be a preferred method

for VNIR-DRS soil characterization. Using BRT, we were also able to predict ordinal clay mineralogy levels for montmoril-

lonite and kaolinite, with 88% and 96%, respectively, falling within one ordinal unit of reference X-ray diffraction (XRD)

values (0–5 on ordinal scale). Given the amount of information obtained in this study with ~4�103 samples, we anticipate that

calibrations sufficient for many applications might be obtained with large but obtainable soil-spectral libraries (perhaps 104–105

samples). The use of auxiliary predictors (potentially from complementary sensors), supplemental local calibration samples and

theoretical spectroscopy all have the potential to improve predictions. Our findings suggest that VNIR soil characterization has

the potential to replace or augment standard soil characterization techniques where rapid and inexpensive analysis is required.
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1. Introduction

There is a recognized need to develop rapid and

inexpensive techniques for soil characterization to

support applications like quantitative soil–landscape

modeling (McKenzie et al., 2000), precision agricul-

ture (Rossel and McBratney, 1998; Thomasson et al.,

2001) and global soil C monitoring (Post et al., 2001).

Standard soil characterization procedures at the U.S.

National Soil Survey Center cost ~$2500 per pedon

with processing times of 6–12 months. As a result,

relatively few locations in the United States have been

fully characterized. Soil–landscape models (Hudson,

1992; Zhu et al., 2001) and soil maps have been

constructed largely on the basis of field observa-

tions—including Munsell colors, hand texturing, pH

indicators, and acid reaction.

Recent research has suggested that proximal visible

and near-infrared (VNIR, 400–2500 nm1) diffuse re-

flectance spectroscopy (DRS) could provide inexpen-

sive prediction of soil physical, chemical and

biological properties (Ben-Dor and Banin, 1995;

Reeves et al., 2000, 2002; Dunn et al., 2002; Shepherd

and Walsh, 2002; Islam et al., 2003). The practical

advantages of VNIR-DRS for this application include:

(i) rapid scans, b1 s; (ii) a scanning area of at least 3

cm2 which eliminates the need for fine grinding; and

(iii) light-weight, portable scanners that can be used in

the field as well as the lab.

The use of VNIR-DRS to characterize soils (Stoner

and Baumgardner, 1981; Baumgardner et al., 1985),

minerals (Hunt, 1977, 1982; Clark and Roush, 1984;

Clark, 1999) and soil organic matter (SOM) (Baum-

gardner et al., 1985; Henderson et al., 1992) dates

back to at least the 1960s. However, most of the work

on soil reflectance has been focused on remote sens-

ing applications and multispectral sensors (Baumgard-

ner et al., 1985; Ben-Dor, 2002). Hyperspectral soil

analysis, until recently, was largely descriptive and

taxonomic (Stoner and Baumgardner, 1981). Recent

improvements in field-portable VNIR spectroradi-

ometers have made this technology faster, lighter,

and easier to use than previously. At the same time,

commercial chemometrics and data-mining software
1 In remote sensing terminology, 400–2500 includes the Visible

(VIS), Near-Infrared (NIR), and Short-Wave Infrared (SWIR)

regions.
have advanced considerably to provide a new set of

tools for soil spectrometry (Friedman, 1991, 2001;

Wold et al., 2001).

1.1. Fundamentals of VNIR-DRS

Spectral signatures of materials are defined by

their reflectance, or absorbance, as a function of

wavelength. Under controlled conditions, the signa-

tures are due to electronic transitions of atoms and

vibrational stretching and bending of structural

groups of atoms that form molecules and crystals.

The fundamental vibrations of most soil materials

can be found in the mid-infrared region, with over-

tones and combinations found in the near-infrared

region. For example, the fundamental features related

to various components of soil organic matter gener-

ally occur in the mid-to thermal-infrared range (2.5–

25 Am), but their overtones (at one half, one third,

one fourth etc. of the wavelength of the fundamental

feature) occur in the near-infrared (0.7–2.5 Am) re-

gion. Soil minerals such as different clay types have

very distinct spectral signatures in the short-wave

infrared region because of strong absorption of the

overtones of SO4
2�, CO3

2� and OH� and combina-

tions of fundamental features of, for example, H2O

and CO2 (Hunt, 1982; Clark, 1999). Electronic

absorptions are primarily associated with Fe-bearing

minerals (e.g., hematite, goethite, biotite, and oliv-

ine) with fundamentals found in the VNIR range

(Scheinost et al., 1998, 1999) and giving rise to

distinctive colors long employed in the field charac-

terization of soils (Schwertmann, 1993).

VNIR soil reflectance is a function of soil compo-

sition—organic materials, primary minerals, clay

minerals, salts, and poorly-crystalline andic materi-

als—which is central to the U.S. Soil Taxonomy

system and soil management interpretations (Table

1). VNIR reflectance spectra for most primary and

secondary minerals have been well-described, though

quartz and feldspars have weak to non-existent

absorptions in the VNIR range (Hunt, 1977, 1982;

Clark, 1999; Clark et al., 2003). The VNIR spectra for

andic materials, vermiculites and (surprisingly) SOM

have not been well described, perhaps due to the

complexity or vague definitions of these materials.

In addition to measuring mineral and organic soil

constituents, VNIR-DRS has been used to estimate



Table 1

Soil constituents with established VNIR-DRS absorptions and related soil taxonomy diagnostics

Key soil constituents VNIR absorptions Soil taxonomy diagnostics

SOM C–H, N–H, C–O Histic, folistic, mollic, umbric, sombric,

melanic, spodichorizons; fibric, hemic,

sapric, limnic materials

CaCO3, CaSO4�H2O CO3, SO4 Calcic, petrocalcic, gypsic, petrogypsic

Clay minerals H2O, O–H, Fe Argillic, natric, glossic, oxic, kandic,

coefficient of linear extensibility (COLE)

Fe-oxyhydroxides Electronic absorptions Oxic, spodic, ortstein, plinthite, placic,

redoximorphic features

Mafic primary minerals Electronic absorptions Weatherable primary minerals

Poorly-crystalline materials ?C–O, C–H, N–H, H2O, O–H? Melanic, andic soil materials
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fertility measures such as CEC, base saturation, pH,

exchangeable bases and extractable P (Ben-Dor and

Banin, 1995; Dunn et al., 2002; Shepherd and Walsh,

2002; Islam et al., 2003), texture (Ben-Dor and Banin,

1995; Shepherd and Walsh, 2002; Cozzolino and

Moron, 2003; Islam et al., 2003; Moron and Cozzo-

lino, 2003), extractable Fe (Ben-Dor and Banin, 1995;

Dunn et al., 2002), and total elements Ca, Mg, Fe,

Mn, K, and Cu (Cozzolino and Moron, 2003; Moron

and Cozzolino, 2003; Udelhoven et al., 2003). To the

extent that secondary properties can be related to soil

composition (e.g., CEC to clay mineralogy and SOM)

we would expect to find robust, global relationships

with VNIR-DRS.

1.2. Modeling approaches

1.2.1. Boosted regression trees

Following Friedman (2001), boosted models can

be expressed in the general form:

F x; bm; amf gM0
� �

¼
XM

m¼0
bmh x; amð Þ ð1Þ

where h(x;a) represents a simple classification func-

tion or bbase learnerQ with parameters a and input

variables x, m represents the model step, and bm is a

weighting coefficient for step m. With the well-known

AdaBoost algorithm of Freund and Schapire (1997),

the base learner is applied sequentially to reweighted

calibration datasets such that observations with larger

residuals receive proportionally greater weights in

subsequent iterations. The final classification is com-

puted with a weighted vote as shown in (1). Friedman

(2001, 2002) has developed a new approach to fitting
additive models of the form shown in (1), termed a

Gradient Boosting Machine (GBM). With this ap-

proach, a numerical solution is found that involves

sequentially fitting the base learner (using least

squares) to bpseudoQ-residuals computed from the

gradient of a differentiable, prescribed loss function

(lack of fit)—with respect to the predicted value for

each calibration observation for the current step. In a

further development, Friedman (2002) has found that

the use of bbaggingQ or random subsampling from the

calibration set in conjunction with boosting improves

on boosting alone.

For this application, we used Boosted Regression

Trees (BRT) which essentially adds boosting to a

regression tree routine like CARTR (Breiman et al.,

1983). Though we used the commercial software

TreenetR for this project, a BRT module has recently

become available in the R freeware statistical package

which should make this modeling approach more

widely available. The primary advantages of BRT

include (i) the ability to include a large number of

weak relationships in a predictive model; (ii) insensi-

tivity to outliers in the calibration dataset; (iii) the

elimination of the need for uniform data transforma-

tions; and (iv) relative immunity to boverfittingQ
(Freund and Schapire, 1997, 2000; Friedman et al.,

2000a,b; Ridgeway, 2000; Friedman and Meulman,

2003). Friedman et al. (2000a) has also demonstrated

the links between boosting (a machine learning algo-

rithm) and maximum-likelihood, additive modeling in

statistics. Given the high-dimensional nature of dif-

fuse reflectance spectroscopy and the large number of

weak and contingent relationships between soil com-

position and VNIR reflectance, BRTwould seem to be

an ideal tool for VNIR-DRS soil characterization.
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1.2.2. PLS regression

For soil characterization, Partial Least Squares

(PLS) regression using the 1st derivatives of soil

reflectance is commonly used to reduce high-dimen-

sional spectral data obtained from NIR detectors

(Reeves et al., 1999; Dunn et al., 2002; Martin et

al., 2002; McCarty et al., 2002; Cozzolino and

Moron, 2003; Moron and Cozzolino, 2003; Udelho-

ven et al., 2003). PLS regression, a bchemometricQ
technique, is similar to Principle Components Regres-

sion (PCR) in that both employ statistical rotations to

overcome the problem of high-dimensional, correlated

predictors, except that in PLS the X and Y variables

are rotated relative to the response variables to max-

imize predictive power (Geladi and Kowalski, 1986;

Wold et al., 2001).

These bempiricalQ modeling approaches have

commonly been applied to one or more field studies,

with local calibration data required for each applica-

tion. There have been a few regional calibrations

reported in the literature (Dunn et al., 2002; McCarty

et al., 2002; Shepherd and Walsh, 2002), though in

the one temperate region study (McCarty et al.,

2002) there are questions as to whether validation

has been sufficiently independent (Brown et al., in

press). A key limitation for bblack boxQ empirical

modeling is that results cannot be reliably extended

beyond the range of materials used in the calibration

phase (Dardenne et al., 2000). Shepherd and Walsh

(2002) have proposed that spectral libraries be con-

structed with associated lab calibration data, and that

these libraries be used to predict soil properties for

new samples that have been screened for spectral

similarity. Spectrally dissimilar soils are submitted to

the lab for characterization with subsequent inclusion

in an expanded spectral library. In such a manner a

global spectral library could be constructed, though

the number of calibration samples required for such

a library has not been estimated, nor have precise

rules been established for determining sufficient

spectral similarity for reliable prediction.

1.3. Study objectives

Our primary objective in this study was to evaluate

the precision and accuracy of empirical VNIR soil

characterization modeling when applied to a large,

diverse, bglobalQ set of independent soil samples.
We use the term bglobalQ in this context to emphasize

sample independence, a complete range of sample

depths, and the wide range of climatic regions includ-

ed in the spectral library. Though samples from five

continents were included in this study, the majority

came from the U.S. and associated territories. Sec-

ondly, we compared BRT data-mining and PLS re-

gression with and without auxiliary predictors.

Finally, we estimated the number of calibration sam-

ples required to construct a truly global, empirical,

VNIR-DRS soil characterization model.
2. Methodology

2.1. Sampling design

We obtained laboratory characterization data for all

profiles sampled from 1988 to 1999 and subsequently

characterized by the US National Soil Survey Center-

Soil Survey Laboratory (NSSC-SSL) in Lincoln, NE;

a total of 55,962 samples from across the United

States as well as Africa and Asia. Samples with

missing data for CaCO3% equivalent and pH (1 :1

in H2O)z7.6 were removed from the dataset to re-

duce potential problems with unmeasured Inorganic

C. We then selected 46,363 samples for which the

following soil characterization values were available,

with NSSC-SSL method codes provided in parenthe-

ses (Soil Survey Staff, 1996): (i) IC by HCl treatment

and manometer (6E1); (ii) SOC by modified Walkley–

Black (6A1) or Total C by combustion (6A2); (iii) pH,

1 :1 in H2O and 2 :1 in 0.01 M CaCl2 (8C1f); (iv)

CEC using NH4OAc at pH 7.0 (5A1); (v) exchange-

able sodium percentage (ESP) using NH4OAc at pH

7.0 (5D2); (vi) clay % and sand % via the pipette

method (3A1); (vii) 15-bar H2O retention per unit clay

(8D1); and (vii) CEC per unit clay (8D1). In addition

to these composite soil properties, we also screened to

only include samples with mineralogical characteriza-

tion, either (i) clay mineralogy as determined by XRD

on oriented clays with results recorded in relative peak

intensities with ordinal values of 0–5 (we converted

NSSC-SSL values of 6, indicating no peak, to 0 for

ordinal consistency) (7A2); or (ii) optical mineralogy

for fine sand fractions (7B1).

The parameters listed above were transformed

using Principal Components Analysis (PCA), with
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Fig. 1. Wavelength-specific signal-to-noise (S /N) ratio for ASD

Fieldspec Pro FR spectroradiometer used in study.
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standardized and centered variables. We then strati-

fied the samples using the clara clustering routine in

R which approximates Partitioning Around Mediods

for large datasets (Kaufman and Rousseeuw, 1990),

with 20 subsets of 2000 each, and k =12 clusters.

The clusters were ranked according to size (cluster

with the least number of samples was ranked 12), a

random number (0–1) was generated for each sam-

ple, and a weighting factor was computed as: cluster

rank � random (0–1). The data were subsequently

sorted by pedon and the inverse of the weighting

factor. The first sample for each pedon in this sorted

dataset was selected as the primary sample, and the

second as the alternate to be selected in situations

where the primary could not be found in the archive.

Through this process, a total of 4184 composition-

ally diverse, well-characterized, and largely indepen-

dent soil samples were selected for this study. Of the

total, 3760 samples came from the US, with 416

samples from 36 different countries in Africa, Asia,

S. America and Europe (8 samples had no location

information). Within the US, samples were obtained

from all 50 states and two territories (Northern Mari-

ana Islands and Puerto Rico), with the number of

samples per state ranging from 2 (South Carolina) to

254 (Texas). A total of 628 US counties and admin-

istrative districts were included with a maximum of 43

samples taken from any one county. Major horizon

designations included 5 O, 1106 A, 70 E, 2412 B, 518

C and 4 R horizons with 69 miscellaneous materials.

Almost every type of mineral measured by the NSSC-

SSL was represented in the selected soil samples.

2.2. Spectral scanning and processing

We scanned both air-dry and oven-dried (105 8C)
crushed (b2 mm) subsamples for each of the soil

samples using an ASD bFieldspec Pro FRQ VNIR

spectroradiometer (Analytical Spectral Devices, Boul-

der, CO) with a spectral range of 350–2500 nm, 2 nm

sampling resolution and spectral resolution of 3 nm at

700 nm and 10 nm at 1400 and 2100 nm. Soils were

scanned from below using a high-intensity source

probe (Analytical Spectral Devices, Boulder, CO)

and white light source with DuraplanR borosilicate

optical-glass Petri dishes to hold samples and a

SpectralonR panel for white referencing. Two com-

posite scans (consisting of 15 internally averaged
scans of 100 ms each) were obtained for each sample,

with a 908 sample rotation between scans. Scans of

oven-dried samples provided no discernable improve-

ment over air-dried scans either separately or in com-

bination, therefore only air-dried results are reported.

The wavelength-dependent signal-to-noise ratio

(S /N) for our instrument was estimated by taking

repeated irradiance measurements of a SpectralonR
white-reference panel over a 5 minute interval and

repeating this exercise five times over a week (Fig. 1).

For pure kaolinite, CaCO3 and a few selected soil

samples, we then fit cubic smoothing splines using

the bsmooth.splineQ function in R (R Development

Core Team, 2004) with wavelength-dependent

weights equal to (S /N)2c (error variance)�1 for re-

flectance measurements. The knot spacing and spline

tension were adjusted heuristically until a fit with 5

nm knot-spacing and a smoothing parameter of 0.05

was found to smooth bnoiseQ yet retain known ab-

sorption features.

Replicate soil scans were compared (reflectance

and 1st derivatives) to check for errors, then averaged

to produce a single reflectance scan for each sample.

Using the weights and smoothing parameters de-

scribed above, cubic smoothing splines were fit to

each raw spectral curve with 1st derivative values

extracted at 10 nm intervals from 360 to 2490 nm.

2.3. Modeling and fit assessment

A commercial BRT package, TreenetR 1.0 (Salford

Systems, San Diego, CA, USA), was employed in this



Table 2

Reflectance variables and soil characterization parameters deter-

mined on b2 mm size fraction following standard soil survey

procedures (Soil Survey Staff, 1996)

Parameter Units Definition

CEC cmolc kg
�1 CEC by NH4OAC is the cation

exchange capacity of the sample,

determined by 1N NH4OAC in a

system highly buffered at pH 7.0

CLAY g kg�1 Total clay is the soil separate with

b0.002 mm particle diameter,

including clay-size carbonate. Pipette

method

D1 1st derivative of VNIR spectral curve

at 10 nm intervals, 360–2490 nm

FEd g kg�1 Dithionite citrate extractable Fe,

considered a general measure of total

pedogenic iron

IC g kg�1 Inorganic C in the b2 mm fraction

measured by CO2 evolution after acid

treatment using pressure–calcimeter

method

KK Ordinal Relative XRD peak intensity of

kaolinite (0–5)

PH The pH of a sample measured in

0.01 M CaCl2 at a 1 :2 soil : solution

ratio

MT Ordinal Relative XRD peak intensity of

montmorillonite (0–5)

SOC g kg�1 Chemically oxidizable soil organic

C as determined by Walkley–Black

method

SND g kg�1 Total sand is the soil separate with

0.05 to 2.0 mm particle diameter,

measured by pipette method

TC g kg�1 Total carbon as determined by

combustion

Table 3

Misclassification cost matrix used to impose ordinal relationships

on TreenetR classification modeling for XRD clay mineralogy

VNIR XRD  
0 2 5431

0
1
2
3
4
5

0
1
2
3
4
5

5
4
3
2
1
0

4
3
2
1
0
1

3
2
1
0
1
2

2
1
0
1
2
3

1
0
1
2
3
4

Shaded cells indicate VNIR prediction= lab measure.
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study. The commercial PLS package Unscrambler

8.0.5 (CAMO Technologies, Inc., Woodbridge, NJ,

USA) was used in selected cases for comparison.

For all modeling, extreme observations (never more

than one per variable of interest) were removed a

priori and hold-out 1/6th cross-validation was used

to estimate predictive accuracy. A key requirement for

model validation is that the validation samples be

bindependentQ-collected from different locations, at

different times and preferably even scanned with dif-

ferent spectroradiometers (Brown et al., in press).

While we were not able logistically to accomplish

the last requirement, the samples used in this study

were otherwise independent. Therefore in this situa-

tion, cross-validation is independent validation.
For TreenetR modeling, a maximum of 12

branches/node were used, and a 20% random test

set taken from the first calibration set (5 /6 of avail-

able observations) was used to estimate the optimum

number of trees for each target variable—rounded

up to the nearest 10 trees, to a maximum of 300

trees (ordinal mineralogy) or 1000 trees (continuous

soil properties). In general, increasing the number of

trees in a model almost always improved cross-

validation statistics, but increasing trees came at

the cost of increasing computational requirements

and at the imposed limits incremental improvements

were negligible. For PLS regression modeling (soil

properties only), the optimum number of compo-

nents (j) to include in the model was determined

by examining the cross-validation results and iden-

tifying the first point at which rjbmin(rj + 1, rj +2)

up to a maximum of 50 components. PLS compo-

nent selection should ideally be based upon calibra-

tion data alone (as we did with BRT tree selection),

so the results reported from PLS modeling are

slightly optimistic.

Codes for the key soil and spectral variables used

are provided in Table 2.

2.3.1. Mineralogy

The most abundant clay minerals, in decreasing

order kaolinite (KK), montmorillonite (MT) and ver-

miculite, were modeled using the TreenetR classifi-

cation mode which assigns probabilities to potential

output classes—with XRD clay mineralogy available

for a total of 3372 samples. To impose an ordinal

structure on the classification probabilities, we used a

linear cost matrix shown in Table 3 to compute

penalties for misclassification. So the penalty value



Table 4

Correspondence table displaying ordinal bpeak intensityQ kaolinite
(KK) values as measured using XRD and predicted using VNIR and

TreenetR with 1/6th cross-validation; j(linear weighting)=0.62 fo

validation (N =3372) and j =0.94 for calibration (N =16,860)

VNIR XRD  

0 1 2 3 4 5

0
1
2
3
4
5 
Col. Totals

Row
total

  177
  514
1431
  949
  174
  127
3372

    1
    0
    1
  10
  24
  84 
120

    1
    0
    8
  46
  68
  32 
155

    8
  15
265
568
  70
  10 
936

  73
319
160
  29
    0
    0 
581

  74
  26
  11
    3
    0
    0 
114

    20
  154
  986
  293
    12
      1 
1466

Shaded cells indicate VNIR prediction= lab measure.
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(cost of being wrong) is computed as a sum of

weighted probabilities, for example:

Penalty 1ð Þ ¼ p 0ð Þ � 1þ p 1ð Þ � 0þ p 2ð Þ � 1þ p 3ð Þ

� 2þ p 4ð Þ � 3þ p 5ð Þ � 4:

The predicted output for a given sample is simply the

ordinal value with the lowest penalty value. To evaluate

ordinal model results we computed kappa coefficients

(j) (Thompson and Walter, 1988; Agresti, 1996) with

linear weighting to match the cost structure employed

in model construction (Table 3).

2.3.2. Composite soil properties

Using TreenetR in regression mode, we first

targeted all composite soil properties available

(Section 2.1). Within this set of variables, we were

able to construct effective models for CLAY, CEC,

SOC, IC, and FEd (Table 2). Total C by dry com-

bustion (TC) was only available for a fraction of the

dataset—not sufficient for calibration requirements—

so to maintain consistency we only modeled the

3794 samples with SOC (Walkley–Black). We also

fit VNIR models with % sand (SND) and pH in

CaCl2 (PH), as auxiliary predictors to estimate the

additional predictive value provided by these rela-

tively easy to measure parameters (pH in CaCl2
proved a better auxiliary predictor than pH in

H2O). For comparison, we fit PLS regression models

for the same target variables, with and without the

auxiliary SND and PH predictors.

The following statistics were computed to evaluate

the quality of model fits following Gauch et al.

(2003):

MSD ¼
X

n

Ypred � Ymeas

� �2
=N ð2Þ

RMSD ¼ MMSD ð3Þ

Bias ¼
X

n

Ypred � Ymeas

� �
=N ð4Þ

SB ¼ Bias2 ð5Þ

NU ¼ 1� bð Þ2 � var Ymeasð Þ ð6Þ

LC ¼ 1� r2
� �

� var Ypred
� �

ð7Þ
where b and r2 are the slope and coefficient of deter-

mination, respectively from the least-squares regres-

sion of Ypred on Ymeas. The Mean Squared Deviation

(MSD) is partitioned into three independent compo-

nents describing lack of accuracy due to bias (SB),

non-unity regression line (NU), and lack of correlation

(LC), with MSD=SB+NU+LC.

2.3.3. Assessment lab accuracy and precision for

soil C

Out of the 4184 independent samples selected for

this study, we selected all samples with both SOC

(Walkley–Black) and TC-IC data available for a com-

parison of two standard analytical methods. These

samples were broken into 10 strata by IC and SOC

using K-means clustering (Hartigan and Wong, 1979)

in R (R Development Core Team, 2004). A total of 20

samples were randomly selected from each strata (200

total) for independent laboratory determination at

Montana State University (MSU) of Total C (TC)

by dry combustion using a LECO C/N/S 2000 ana-

lyzer (LECO Corporation, St. Joseph, MI, USA).

Inorganic C (IC) was determined using a modified

pressure calcimeter method (Sherrod et al., 2002).
3. Results

3.1. Clay mineralogy

The results of BRT mineralogical modeling are

presented in Tables 4 and 5. For Kaolinite (KK), we

obtained j(linear weighting)=0.62, with 62% of
r

s

 



Table 5

Correspondence table displaying ordinal bpeak intensityQ montmo-

rillonite (MT) values as measured using XRD and predicted using

VNIR and TreenetR with 1/6th cross-validation; j(linear weight-
ing)=0.64 for validation (N =3372) and j =0.90 for calibration

(N =16,860)

VNIR XRD  

0 1 2 3 4 5

0
1
2
3
4
5 
Col. Totals

Row
totals

1225 
  243 
  525 
  976 
  372 
    31 
3372

0 
0 
0 
0 
0 
0 
0

    9 
    0 
    5 
124 
158 
  21 
317

    53 
    29 
  156 
  574 
  185 
    10 
1007

131 
  53 
  58 
  18 
    1 
    0 
261

850 
  80 
  39
  23 
    3 
    0 
995

182 
  81 
267 
237 
  25 
    0 
792

Shaded cells indicate VNIR prediction= lab measure.
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observations having an exact match between XRD

and VNIR and 96% having VNIR predicted values

within one ordinal class of XRD values. For mont-

morillonite, we obtained j(linear weighting)=0.64,

with 56% of observations having an exact match

between XRD and VNIR and 88% having VNIR

predicted values within one ordinal class of XRD

values. For Vermiculite (not shown), we obtained

j(linear weighting)=0.40, with 53% of observations

having an exact match between XRD and VNIR and

83% having VNIR predicted values within one or-

dinal class of XRD values. Only 40% of samples

had detectable amounts of vermiculite clays and only

24 samples had a peak intensity N3, which proved

insufficient for TreenetR calibration requirements. It

should be noted that j(kappa coefficient of agree-

ment) values are specific to a given data distribution

and cannot be directly compared across different

datasets.

Given the inherent difficulty of obtaining consis-

tent peak values using XRD analysis (Whittig and

Allardice, 1986), we would not have perfect agree-
Table 6

Summary statistics for key soil parameters

CLAY g kg�1 CEC cmolc kg
�1 IC g kg�1

Min. 1 0.2 0.0

1st quart. 109 8.9 0.0

Median 226 15.7 0.0

3rd quart. 366 25.9 1.6

Max 930 165.5 128.8

N 4184 4184 4184
ment even if samples were re-analyzed at the NSSC-

SSL using identical equipment and operator. Were

samples to be analyzed by different operators, using

different equipment and in a different laboratory, the

disagreement could become quite large. In fact, it is

not clear how the NSSC-SSL XRD determination

procedures could be replicated at outside laboratories

short of having personnel trained directly at the Lin-

coln, NE facility. The VNIR mineralogy results, for

KK and MT at least, might not be far removed in

precision from XRD replication in an independent lab.

3.2. Composite soil properties

3.2.1. Summary of soil properties

Summary statistics for key soil characteristics are

provided in Table 6. The data include a full range of

textures for all 4184 samples and PH ranging from

2.56 to 10.75. The IC data is highly skewed with over

half of the samples having no measured carbonates

and relatively few samples having significant amounts

up to 128.8 g kg�1. There was one extreme and

potentially influential SOC value at 536.8 g kg�1,

with the next largest recorded value at 241.6 g

kg�1. Similarly the largest CEC value was 165.5

cmolc kg�1 followed by 106.5 cmolc kg�1 and the

largest FEd value was 236 g kg�1 followed by 158 g

kg�1. These three extreme values were removed prior

to BRT and PLS cross-validation modeling.

3.2.2. General results

Several results were observed for all targeted soil

properties (Table 7).

! A lack of correlation (LC) made by far the largest

contribution to lack of fit (MSD) for all models. As

indicated by bias and squared bias (SB) statistics,

bias made a negligible contribution to the overall
SOC g kg�1 FEd g kg�1 SND g kg�1 PH

0.0 0 1 2.56

1.9 7 134 4.80

4.7 12 333 6.02

12.3 20 571 7.49

536.8 236 994 10.75

3794 2910 4184 4184



Table 7

Soil property predictions using 1st derivative reflectance (D1) of air-dry, sieved (b2 mm) soil samples with either % sand (SND) or PH (CaCl2
solution) as auxiliary predictors

Target CLAY (g kg�1) CEC (cmolc kg
�1)a SOC (g kg�1)b IC (g kg�1) FEd (g kg�1)c

Predictors D1 D1+SND D1 D1+SND D1 D1+SND D1 D1+PH D1 D1+SND

#trees 1000 1000 1000 1000 1000 1000 900 1000 1000 1000

N 4184 4184 4183 4183 3793 3793 4184 4184 2909 2909

BRT (TreenetR), 1/6th cross validation

RMSD 95 54 6.7 5.5 9.0 7.9 6.2 5.6 9.6 8.9

Bias �2 �1 �0.1 �0.2 �0.3 �0.4 �0.4 �0.3 �0.4 �0.5
MSD 8940 2954 45 30 81 62 39 31 92 80

SB 3 1 0 0 0 0 0 0 0 0

NU 2884 382 14 8 25 19 10 7 37 31

LC 6053 2572 31 22 56 42 29 24 54 48

r2 0.73 0.91 0.74 0.83 0.82 0.87 0.83 0.86 0.73 0.77

Slope 0.70 0.89 0.72 0.79 0.76 0.79 0.78 0.82 0.67 0.69

Comparison RMSD values

BRT, calibration 38 23 2.8 2.8 4.1 4.0 3.5 2.9 4.8 4.9

PLS, cross-valid. 108 72 8.9 7.1 12.7 12.2 7.1 7.0 12.0 11.5

a An extreme value of CEC=165.5 cmolc kg
�1 was removed from the analysis.

b An extreme value of SOC=536.8 g kg�1 was removed from the analysis.
c An extreme value of FEd=236 g kg�1 was removed from the analysis.
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lack of cross-validation fit (in all cases b0.5% of

MSD). BRT models tended to underestimate for

high soil property values as indicated by regression

slope values b1 and non-unity (NU) values aver-

aging 30% of MSD. Some of this underestimation

could be due to the relative paucity of observations

available at the higher ends of the property scales.

! The use of auxiliary predictors—either sand content

(SND) or pH in CaCl2 (PH)—improved cross-vali-

dation predictions for all soil properties modeled.

! Calibration RMSD values for all models were far

below validation RMSD with calibration MSD 17–

31% of validation MSD. This indicates that the

~4000 samples used for calibration in this study,

while larger than any previously published spectral

library, represent only a fraction of the total cali-

bration samples required for optimum empirical

VNIR soil characterization.

! In every model reported, Boosted Regression Trees

(BRT) provided notably improved validation

RMSD statistics relative to PLS regression (Table

7). This is not surprising given the non-linear and

contingent relationships between VNIR reflectance

and soil composition (Clark, 1999). Boosted Re-

gression Trees can incorporate complex, non-linear
relationships and interactions whereas PLS regres-

sion is built upon linear relationships between pre-

dictors and the target variable of interest.

3.2.3. Validation results for specific properties

We had difficulty predicting CLAY based upon

VNIR alone. Referring to Table 7, we can see that

the BRT model yielded a RMSD of 95 g kg�1 (9.5%),

not acceptable for most applications. Including SND

as a predictor dropped the RMSD to 54 g kg�1, with

91% of the CLAY variability explained. The regres-

sion slope also increased from 0.70 to 0.89 through

the inclusion of SND as a predictor. A plot of

VNIR+SND-predicted CLAY vs. pipette-CLAY is

provided in Fig. 2a, showing the vast majority of

predictions falling within F10% of the reference

data, little evidence of residual heteroscedasticity,

and considerably fewer samples with N60% CLAY.

(Predicting CLAY using SND alone explained very

little of the variability.) Not shown, we also modeled

SND using VNIR 1st derivatives, but obtained a weak

fit with r2=0.57 and RMSD=176 g kg�1.

As with the CLAY models, CEC prediction was

significantly improved with the addition of SND as a

predictor (RMSD improved from 7.1 to 5.5 cmolc kg
�1
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Fig. 2. Predicted vs. measured (a) clay content (pipette method); (b) CEC (NH4 at pH=7); (c) SOC (Walkley–Black); (d) IC (electronic

manometer); (e) FEd (dithionite–citrate extraction) with 1/6th cross-validation using air-dry, 1st derivative VNIR reflectance spectra, TreenetR,
and either sand content or pH (CaCl2) as an auxiliary predictor.
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with the inclusion of SND as shown in Table 7).

However, the improvement was not as dramatic

even with SND included, r2=0.83 with a regression

slope of 0.79. There were only a few observations with

CECN60 cmolc kg
�1 which contributed to the under

prediction of high CEC values (Fig. 2b). Though relat-

ed to clay content, mineralogy and organic composi-

tion, CEC is measured in the laboratory as a chemical

property only indirectly related to VNIR reflectance.

We found it difficult to predict SOC with the

precision required for most applications, even with

SND included as an auxiliary predictor (Table 7).

With the 1st derivative of VNIR (D1) alone, the

RMSD was 9.0 g kg�1 (0.9% C) and this only de-

creased to 7.9 g kg�1 (r2=0.87) with the inclusion of

SND. Fig. 2c shows significant scatter even at low

SOC values, with wide scatter and under prediction at

SOCN75 g kg�1 (7.5%). Even the calibration RMSD

values were at ~4 g kg�1, which might not be accept-

able for some applications.

Surprisingly, using PH as a predictor in addition

to reflectance did not markedly improve IC predic-
0.5 1.0
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CEC

IC
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Fig. 3. Relative wavelength importance for T
tion (Table 7). The RMSD for D1+PH was com-

puted as 5.6 g kg�1, with an RMSD estimate of 6.2

g kg�1 for reflectance alone (r2=0.83 and 0.86,

respectively). Looking at a plot of VNIR vs. lab

IC (Fig. 2d), we can see a considerable amount of

scatter even for samples with no measured IC. The

BRT models did under-predict high measured IC

values (slope=0.81–0.86), but the total contribution

to error as indicated by NU was relatively small—

most of the samples had little to no measured IC. In

the construction of this dataset, CaCO3(eq)=bNAQ
were converted to zero since all samples are

screened for the presence of carbonates and then

submitted for CaCO3(eq) determination only if nec-

essary. However, small amounts of CaCO3 might

not always be detected. Our model could also re-

quire a larger number of samples with detectable IC

for robust calibration.

We had the greatest difficulty in predicting cit-

rate–dithionite extractable Fe (FEd) using 1st deriv-

ative VNIR reflectance (D1), with RMSD=9.6 and

r2=0.73. The inclusion of SND yielded only a very
1.5 2.0 2.5

elength (µm)

reenetR soil characterization models.
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slight improvement with RMSD=8.9 and r2=0.77.

Most of the error in the BTR models was due to a

lack of correlation and under prediction at higher

values (see LC, NU and MSD values in Table 7).

Even with SND included as a predictor, the models

under-predicted for high FEd measured values (see

Fig. 2e). As with IC, there were many samples

clustered near zero and relatively few samples with

significant amounts of the targeted material (for FEd

we only had 2909 samples total).
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Fig. 4. Accuracy and precision of soil C analytical measurements as indica

samples extracted from the NSSC-SSL database with both measures ava

(modified pressure calcimeter) vs. NSSC-SSL (electronic manometer); and

vs. NSSC-SSL.
3.3. Important wavelengths

With TreenetR it is possible to estimate the relative

importance of model predictors, or in this case VNIR

1st derivative wavelengths (Fig. 3). For SOC, visible

wavelengths of 0.54 and 0.55 Am are noticeably im-

portant as well as the 1.91 Am H2O band. But the SOC

model also depends upon a substantial amount of

information in the 2.0–2.5 Am range, due to both M–

OH and various C–O and C–H absorptions. The region
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ted by: (a) SOC (Walkley–Black) vs. (Total C–Inorganic C) for 9687

ilable; (b) Inorganic C as determined at Montana State University

(c) Total C–Inorganic C as determined at Montana State University
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of the C–H stretch overtone ~1.7 Am is also important.

For IC, the most important band is at the well-docu-

mented 2.35 Am CO3 absorption and with information

also obtained at the leading edge of the 2.5 Am CO3

feature. For FEd, CLAY and CEC, information is

obtained from throughout the VNIR range. Some of

these wavelengths can be related to electronic absorp-

tions, metal–OH bends, the OH stretch, etc. . .. How-
ever, given the multitude of overlapping absorptions in

the VNIR range and the number of wavelengths mak-

ing significant contributions to the BRT models, it

quickly becomes difficult to identify particular spectral

features with confidence (Hunt, 1977; Clark et al.,

1990, Clark, 1999; Ben-Dor et al., 1999). There also

appears to be much redundancy in the spectra in the

sense that if some bands are deleted other bands can

often serve as surrogates with little or no loss in

prediction accuracy.

3.4. Laboratory soil C determination

SOC as determined by the bWalkley–BlackQmethod

(Walkley and Black, 1934) is only loosely correlated

with SOC as determined by dry combustion Total C

less Inorganic C. Fig. 4a shows a very bfuzzyQ correla-
tion between these two standard methods with a devi-

ation from the 1 :1 line at higher SOC values. In terms

of the sum of squared error, a lack of correlation (LC)

and the non-unity regression line (NU) account for 87%

and 12% of MSD, respectively. The RMSD value of

6.0 g kg�1 is comparable to estimated RMSD values

between VNIR models and SOC (Walkley–Black).

Even when we replicated dry combustion Total C

(TC) determination and Inorganic C (IC) via electron-

ic manometer for a representative subset, MSU data

did not match NSSC-SSL data as closely as we

anticipated. RMSD for the between-lab IC compari-

son (Fig. 4b) was estimated at 4.3 g kg�1 with two

outliers removed. For TC-IC (which combines the

errors of two measurements), RMSD was estimated

at 7.7 g kg�1 (or ~0.8%) with 2 outliers removed

(Fig. 4c). Cast in this light, our VNIR models for

SOC and IC prediction are not far removed from what

might be obtained by re-analyzing NSSC-SSL sam-

ples in an independent lab. (Using 20% replication,

we estimated internal MSU measurement error at 1.4

and 3.7 g kg�1 for IC and TC, respectively.) Sample

handling and coding errors are part of life in any
analytical laboratory, measurement errors are not in-

significant, and between-laboratory comparisons

often reveal surprising discrepancies. Precision and

accuracy are elusive goals in soil characterization and

yet are not often quantified—for both VNIR and

standard laboratory methods.
4. Discussion

4.1. BRT vs. PLS regression

While almost all important soil constituents have

characteristic VNIR reflectance curves, absorption

features are rarely unique to a given property. This

is why BRT modeling—which can incorporate multi-

ple, high-level interactions as well as linear and non-

linear correlations—is such a powerful and appropri-

ate technique for VNIR-DRS soil characterization. In

a sense, BRT modeling is an empirical approach that

mimics what workers like Clark et al. (2003) have

accomplished with continuum-removal and an expert

system with deductively constructed interactions and

contingencies. PLS regression, which clearly did not

perform as well in this application, can be used pri-

marily to model linear correlations and is suited to

small data sets, but has no fundamental capability to

identify interactions or fit non-linear relationships. In

the MIR (Mid-Infrared) range, where absorption fea-

tures are more clearly separated, PLS regression might

suffice but for VNIR-DRS we found boosted regres-

sion trees to be a superior modeling approach.

4.2. Appropriate target parameters

In addition to modeling clay mineralogy, we devel-

oped models to predict composite soil properties like

clay, CEC and FEd. But the clay-size fraction in soils

is actually comprised of a number of different minerals

including materials like calcite and dolomite which

have very different spectra than secondary phyllosili-

cates. CEC is related to mineral composition and

organic matter, but the exact nature of that relationship

is complex and the use of CEC is only appropriate

within a certain pH range (e.g., for acidic soils, Effec-

tive Cation Exchange Capacity or ECEC is often

preferred). IC can be held in both calcite and dolomite

which have slightly different VNIR absorptions



Table 8

Estimation of required calibration samples for empirical VNIR-DRS

soil characterization, assuming (i) adequate span of compositional

space can be accomplished with soil materials in units of 5%; (ii) all

of the important soil materials are included below; and (iii) SOM,

amphiboles, andic materials, etc. . . can be considered homogenous

end member materials

Material Global soil

composition

model (%)

Weathered soil

composition

model (%)

Amphiboles 0, 5, 10, . . . , 20 –

Andic materials 0, 5, 10, . . . , 100 –

Biotite 0, 5, 10, . . . , 25 –

Calcite 0, 5, 10, . . . , 20 –

Dolomite 0, 5, 10, . . . , 20 –

Gibbsite 0, 5, 10, . . . , 50 0, 5, 10, . . . , 50

Goethite 0, 5, 10, . . . , 40 0, 5, 10, . . . , 40

Hematite 0, 5, 10, . . . , 25 0, 5, 10, . . . , 25

Illite 0, 5, 10, . . . , 50 –

Kaolinite 0, 5, 10, . . . , 80 0, 5, 10, . . . , 80

Montmorillonite 0, 5, 10, . . . , 80 0, 5, 10, . . . , 20

Muscovite 0, 5, 10, . . . , 25 –

Olivine 0, 5, 10, . . . , 20 –

Pyroxenes 0, 5, 10, . . . , 20 –

Quartz and feldspars 0, 5, 10, . . . , 100 0, 5, 10, . . . , 100
Soil organic matter 0, 5, 10, . . . , 20 0, 5, 10

Vermiculite 0, 5, 10, . . . , 80 –

No. of combinations

(required calibration)

5.2�109 5.9�104
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(Clark, 1999). SOC is comprised of a great variety of

biomolecules, detritus, and humic substances. Extract-

able Fe is operationally defined (Mehra and Jackson,

1960), and we would probably be more interested in

the amounts of soil hematite and goethite. Alterna-

tively, we might want to build calibration models to

predict soil composition directly—the types and

amounts of minerals and organic molecules—rather

than properties related to soil composition.

4.3. Auxiliary predictors

Sand content and pH (CaCl2) both proved to be

valuable auxiliary predictors. These soil properties (i)

are simple and inexpensive to obtain; (ii) are funda-

mental soil characteristics; (iii) cannot be reliably

related to VNIR-DRS; and (iv) improve the predic-

tions of other soil properties. In certain regions, such

as where silt is not an important soil component, this

might not be as necessary or valuable. But given the

difficulty in distinguishing between sand-and silt-

sized quartz and feldspars with weak spectral signa-

tures (Clark et al., 2003), sand vs. silt content might

always be difficult to ascertain in temperate cli-

mates—even with larger or local calibration. Soil

pH will only be related to VNIR-DRS to the extent

that pH is related to soil constituent composition like

SOC, IC and mineralogy. For many applications, this

will not be sufficient. VNIR spectroscopy alone will

never provide complete soil characterization, so ap-

plication in parallel with other sensing technologies

should be a focus of future research.

4.4. Calibration requirements

A key requirement for empirical modeling is that

validation samples be similar to calibration samples

(Shenk and Westerhaus, 1991a,b; Dardenne et al.,

2000). Or, put another way, to build a global empirical

VNIR-DRS soil characterization model we would

need a calibration library that spanned the range of

possibilities for soil composition. Following Dardenne

et al. (2000) we constructed two theoretical soil com-

position models based on simple combinatorics, one

global and another for highly weathered tropical soils

(Table 8). We made a number of simplifying assump-

tions for our soil models, including most importantly

(i) discrete constituent intervals of 5% are of suffi-
ciently high resolution for the purposes of VNIR-DRS

modeling; (ii) soil organic matter and bandic materi-

alsQ are spectrally and compositionally homogenous;

(iii) the minerals and mineral classes listed can be

treated as single constituent end-members.

Despite these simplifying assumptions, we comput-

ed that 5.2�109 carefully selected calibration samples

would be required to span the global soil compositional

space. We computed a far more reasonable calibration

size for our tropical soil model, 5.9�104 samples.

Tropical soils are, on the whole, compositionally

much less diverse than less weathered temperate soils

and should therefore be more amenable to empirical

modeling approaches. In regions with uniform parent

material (e.g., loess deposits), we might also expect to

construct reliable calibrations with a limited number of

samples. Further research is needed to test whether

local calibration procedures (Berzaghi et al., 2000)

could help to reduce the size of calibration sets for

regional or watershed applications. However, parent

materials like glacial till with a range of primary and
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secondary minerals might well require large calibration

datasets even in geographically restricted areas.

Given the computed calibration requirements for a

global soil characterization model, the results reported

in this study show a remarkable level of accuracy and

explanation. This suggests that (i) spectral absorptions

of important soil materials are at least partially inde-

pendent; (ii) viable empirical calibrations might be

constructed with very large-but obtainable-soil spec-

tral libraries on the order of 104 to 105 samples; and

(iii) some soil properties, like the montmorillonite and

kaolinite mineralogy reported in this study, might be

reliably estimated with far fewer samples. Reliable

calibrations for materials like wheat grains and forages

can be constructed with just a few thousand samples

(Shenk and Westerhaus, 1991a,b; Dardenne et al.,

2000) but these materials are compositionally con-

strained by plant genetics. Soil composition is, unfor-

tunately, not so constrained which makes the problem

of VNIR-DRS soil characterization both different and

more challenging than that of grain or forage analysis.

4.5. Future development

At present, with a relatively limited soil spectral

library, we anticipate needing to refine predictions

through four complementary approaches (Fig. 5).

! Expand the soil-spectral library by at least one

order of magnitude by scanning previously charac-

terized state and national soil archives. This work,
Global VNIR-DRS 
Library (~4×103)

Local 
Calibration

Sand & pH
Theoretical

Spectroscopy

Soil 
Characterization

Expanded
Global VNIR-DRS 
Library (104 -105)

Scan additional archives

Fig. 5. Schematic diagram of proposed process to obtain reliable,

robust and accurate estimates of local soil properties using

VNIR-DRS.
necessarily involving multiple labs, will require

that we address calibration transfer between spec-

trometers of the same and different types.

! Augment the global library with local or regional

calibration samples for local or regional prediction.

In previous work by the lead author (Brown et al.,

in press), up to 30% calibration was required to

obtain reliable SOC and IC predictions for glacial

till soils in northern Montana. By using a global

library in conjunction with local calibration, we

anticipate both lowering calibration requirements

and improving model robustness.

! Employ auxiliary predictors like sand content and

pH, either measured in the lab or obtained through

the use of complementary in situ sensors. For

example, the complementary use of VNIR and

Mid-Infrared (MIR) sensors (Janik et al., 1998)

might overcome the limitations of each technology.

! A great deal more work is required to incorporate

theoretical VNIR spectroscopy into soil DRS mod-

eling. Uniform predictor transformations (e.g., log,

1 /x, x2) will not improve BRT models, but local

transformations like continuum-removal will lead

to different predictions. Using these techniques to

isolate spectral features can be used in conjunction

with high-dimensional quantitative techniques like

BRT or in expert systems like Tetracoder (Clark et

al., 2003).

5. Conclusions

In this VNIR-DRS study of 4184 largely indepen-

dent samples from the U.S. Soil Survey archives, we

found strong relationships between VNIR reflectance

and the following important soil properties: relative

kaolinite content, relative montmorillonite content,

clay content (pipette), CEC (NH4 at pH=7), SOC

(Walkley–Black), IC (HCl with electronic manometer)

and citrate–dithionite extractable Fe. Given the broad

sampling across the United States, theAmericas, Africa

and Asia, this demonstrates the fundamental viability

of VNIR-DRS for global soil characterization. The fact

that information on a number of fundamental soil prop-

erties can be obtained simultaneously provides promise

for the use of VNIR-DRS in many practical agronomic

and environmental applications, including the deve-

lopment and monitoring of soil health indicators.
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Given the compositional diversity of soils, we

estimate that on the order of 109 independent sam-

ples would be required to construct a complete glob-

al, empirical soil library for calibration purposes.

However, since we were able to construct useful

predictive models with just 3000–4000 samples in

this study, fundamental and partially independent

soil-spectral relationships may reduce the required

number of calibration samples to a manageable num-

ber (perhaps 104–105). For highly weathered tropical

soils with limited mineralogical diversity empirical

calibrations should be obtainable with far fewer

samples. In the interim, at least for temperate

regions, we propose that global libraries be used in

conjunction with local calibration samples and with

easy-to-measure auxiliary predictors like sand con-

tent and pH. Developments in theoretical soil spec-

troscopy and spectral processing techniques should

also improve predictions while reducing calibration

requirements.

Boosted regression trees (BRT) proved far superior

to PLS regression and have many desirable qualities

such as (i) the ability to model interactions and non-

linear relationships; (ii) relative immunity to over-

fitting; and (iii) the ability to utilize a large number

of bweak classifiersQ and thereby make maximum use

of the entire VNIR spectrum.

The protection and enhancement of the global

environment requires the development of innovative

new methodologies to assess the spatial and temporal

variability of soil properties. In particular, spectro-

scopic techniques like Visible and Near-Infrared Dif-

fuse Reflectance Spectroscopy (VNIR-DRS) offer the

potential to quickly and inexpensively characterize

soils relative to standard laboratory techniques. We

anticipate that the future development of VNIR soil

spectroscopy and the expansion of soil-spectral libra-

ries will support the assessment of soil variability at a

scale and resolution not previously possible.
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